Powered Orthosis Project Forum

by

Rungun Ramanathan, Sean Stroud and Michael Alexander, M.D.

ASEL Technical Report #ROB9405
Powered Orthosis Forum

by

Rungun Ramanathan, Sean Stroud and Michael Alexander, M.D.

This document contains reports from two meetings that were organized at Applied Science and Engineering Laboratories (ASEL) as part of the powered orthosis project. These meetings were held with families which had at least one child with Spinal Muscular Atrophy (SMA) or Duchenne's Muscular Dystrophy (DMD). Table I presents some data about the subjects. These meetings were to explore with the families the tasks that they wished their child could do, but could not do now because of their child’s condition. The families were also given a tour of the labs and shown various devices. The event was video taped.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Age (in yrs)</th>
<th>Disability</th>
<th>Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>14</td>
<td>SMA-II</td>
<td>M</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>SMA-II</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>DMD</td>
<td>M</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>SMA-II</td>
<td>M</td>
</tr>
<tr>
<td>E</td>
<td>11</td>
<td>DMD</td>
<td>M</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>DMD</td>
<td>M</td>
</tr>
<tr>
<td>G</td>
<td>14</td>
<td>DMD</td>
<td>M</td>
</tr>
<tr>
<td>H</td>
<td>13</td>
<td>DMD</td>
<td>M</td>
</tr>
<tr>
<td>J</td>
<td>23</td>
<td>DMD</td>
<td>M</td>
</tr>
<tr>
<td>K</td>
<td>18</td>
<td>SMA</td>
<td>M</td>
</tr>
</tbody>
</table>

Table I : Subject details

DMD Duchenne’s Muscular Dystrophy
SMA Spinal Muscular Atrophy, Type I Werdnig-Hoffman, Type II Intermediate and Type III Kugelberg Welander

Brain storming for generating functional orthosis specifications was done prior to a tour of the robotics laboratory to avoid biasing the participant’s ideas. Later, a tour was given to show the capabilities of current technology and some of the orthosis related work. The tour was given to allow them to re-evaluate some of their ideas from the earlier brain storming session.

The meeting was begun with the question “What activities would you like an orthosis or brace or machine to help you do, that you cannot do for yourself now”? The question was phrased in this manner to minimize any bias towards a particular type of device, while restricting the ideas to the area of orthoses. First, the children were asked to give their ideas. The children continued until they had no more ideas. This ensured that they did not have a bias based on the needs of their parents. Next, the parents were asked to give their ideas. After this, both the parents and the children were allowed to add ideas. The list of tasks that were generated is presented in Appendix I.

Next, the families were given a tour of the robotics laboratory, which focused on some of the orthotic devices that are currently available for the arm and others which are research ideas.

Four families attended the first meeting, while five families attended the second meeting.

Support for this research has been provided by Grant Number H133E30013 from the National Institute on Disability and Rehabilitation Research (NIDRR). Additional support has been provided by the Nemours Foundation. Special thanks to the children and their families at the A.I. duPont Hospital who have participated in this meeting. Thanks to all the staff at ASEL who helped in making the meetings a grand success.
meeting.

During the first meeting four workstations were setup for the tour. The four workstations were the Balanced Forearm Orthosis (BFO) and overhead slings, RTX test bed for a powered orthosis with one joint activated, a prototype of an orthosis incorporated with an anti-gravity mechanism and a painting robot.

During the second meeting five workstations were setup for the tour. The five families were shown demos at each workstation. The five workstations were the Balanced Forearm Orthosis (BFO) and overhead slings, RTX test bed for a powered orthosis, force measuring setup, the MANUS robot and a prototype of an orthosis incorporated with an anti-gravity mechanism.

The BFO is a device which provides lower arm support and is mounted on the side of the wheelchair. It is also referred to as a mobile arm support, ball-bearing feeder, or linkage feeder. The BFO consists of various arrangements of sloping metal links and a simple lever at the forearm. It is generally used by shifting the weight of the shoulder or trunk, which in turn will provide hand motion due to the lever support at the forearm. One child was already using a BFO, while two of the other children were very good candidates for being fitted with BFOs. Two of the children were prescribed these devices from the hospital, but had not yet used them. This was an opportunity for them to evaluate the device.

The RTX100 is a six DOF (degrees of freedom) scara configuration robot. During the first meeting there was only one joint activated and a force sensor was attached. There were no elaborate control scheme implemented, it was based on a direct mapping of the user force to robot velocity. The families in the first meeting thought that this was a good idea.

During the second meeting the RTX had a more elaborate setup. It used only five DOF in the orthosis test bed and was equipped with a force sensor and a splint for the lower arm support. The five DOF were mapped to force input in three cartesian directions and moment input about 2 orthogonal axes. Two different control schemes, which related force input (at the force sensor) to movement of the arm, were demonstrated. One of the control schemes which was presented, mapped input force to cartesian velocity. Another control scheme which was presented used force pulses, above threshold values, to activate and deactivate the motion of the orthosis. Further details of the two control scheme are given in Appendix II. Every parent and child tried\(^1\) this device and they felt that it was a good idea. At least two children and one parent felt that the second control scheme was not as good as the first one, since it did not exercise their muscles. They considered the orthosis with this control scheme as a “lazy man's device”.

Another workstation was a prototype for a non-powered orthosis. This prototype incorporated an anti-gravity mechanism and also had a splint for lower arm support. The lower arm support was provided only for the second meeting. The prototype was attached to a chair which mimicked the wheelchair. All the families

1. Some of them pushed the splint by their fingers to activate the device, while others strapped their arms in the splint and used the device. It was felt that some learning time was needed before they could use the system.
thought that this was a good idea and would like to use it. They felt that the designers should refine the prototype. They felt that it was a better idea than using a robot as an orthosis. One parent said that they could benefit from the device in its present state.

Pizza was served for lunch. The idea of providing lunch was to observe how the children with SMA and DMD managed to eat. Six of the ten children could eat on their own. One of the six children could eat by himself, if his food was cut into pieces. One child used a BFO to feed himself, but required some peculiar motions to do so. Four of the children used the edge of a table as a support to feed themselves. Three of children were fed by one of their parents, while one of them did not eat.

After lunch, the group got together to refine their ideas based on what they saw on the tour. It was noticed that they did not think of many new ideas. Most of the ideas that were presented in the morning session were very practical and realistic. One comment from a parent was to design devices that exploit the full capabilities of the children. It was specifically mentioned that the designed devices should exploit the muscle forces of the user to the maximum extent.

Once they had run out of ideas, they were shown some of the results from previous surveys. They were asked to rank their top five choices from the ones they developed in the morning and the list from other surveys. The choices of every individual participant is reproduced in Appendix IV. Appendix V contains the tasks survey which was given to the group.

The result of the kid’s survey is as follows. The top five tasks of each group appears in italics in the below list. The two numbers in the parenthesis are the number of votes a task got. The first number is the number of votes from the first meeting while the second number is from the second meeting.

- Reaching and picking things off shelves (3,5)
- Keeping from falling forward, straightening oneself, Maintaining Balance (1,5)
- Feeding oneself (1,3)
- Picking things off the floor (0,3)
- Brushing, Combing and Scratching (3,0)
- Talking on the phone (2,1)
- Two handed operations (2,0)
- Raising hand in school (0,2)
- Transferring devices to use toilet, shower (0,2)
- Personal Hygiene (0,2)
- Preparing food (1,1)
- Dressing (1,0)
- Playing with Legos (1,0)
- Playing games (Baseball, Hockey) (1,0)
- Operating a manual wheelchair (1,0)
- Throwing a ball (1,0)
- Holding IPBB (respirator) machine (1,0)
- Typing (1,0)
- Opening/Closing door (0,1)
- Clamping wheelchair (0,1)

1. The reason why the idea was better was not clear, and was not explicitly asked. It could be due to the fact a non-powered device is preferable, or possibly that the prototype orthosis looked compact.
The results of the parents/caretakers survey is as follows.

- **Picking up and manipulating objects from floor and shelves** (6,6)
- **Transferring device to use toilet, shower etc.** (2,8)
- **Feeding and preparing food** (6,3)
- **Brushing, Combing and Scratching** (7,0)
- **Reaching beyond close range** (7,0)
- **Straightening oneself. i.e. providing trunk support** (1,4)
- **Typing** (4,0)
- **Providing full range of arm motion** (0,3)
- **Playing board games** (3,0)
- **Two handed tasks** (2,1)
- **Opening/closing doors** (2,1)
- **Talking on the phone** (2,0)
- **Personal hygiene** (0,2)
- **Holding/placing arm in specific position** (0,2)
- **Straightening their own legs & ankles** (0,2)
- **Playing** (2,0)
- **Placing arm to manipulate wheelchair controls** (0,1)
- **Exploiting full potential of the children** (0,1)
- **Wearing clothes, shoes etc.** (0,1)
- **Turning pages** (1,0)
- **Throw a ball** (1,0)
- **Operating a manual wheelchair** (1,0)
- **Dressing** (1,0)

It was interesting to note that the children thought of ideas which were a real need for them, not whimsical or fancy ones. Another observation was that the children thought of needs for their present use only, while some of the parents thought of long term ideas too. It was also interesting to note that the parents and their child had a few common ideas as being among the top five things to do. This can be seen from the results presented in Appendix IV. The children in this second group were heavier than in the first group and hence the task of transferring them became a more important issue for the parents/caretakers. Two children made a remark that they would love a third arm, in addition to assisting their two arms. Some of the parents also suggested that the project staff spend at least one day with the child in their own environment. This would enable the staff to observe tasks which are done routinely and unconsciously by the children and their parents, but they are not able to recall that activity as a desired function of an orthotic device.

Appendix I

The following were the list of tasks that the participants wanted an orthosis or brace or machine to help them do which they cannot do now. The list is presented in no particular order.

TASKS CHILDREN DEVELOPED

- Picking stuff off shelf, floor etc.
 These include picking books, things fallen on the floor, picking goods in grocery stores, etc.
- Straightening legs, ankle
- Moving arm from lap to control
- Playing baseball
- Opening and closing doors
- Switching lights on/off
- Keeping feet from bending inward (heel on foot plate)
- Reaching and picking up telephone
- Raising hand at school
- Designing devices that encourage arm power etc.
- Adjusting devices as disability progresses
- Shifting body on wheelchair
- Placing items in the microwave
- Combing hair, scratching nose & neck, brushing teeth
- Driving a powered wheelchair, manual wheelchair
- Typing at a computer
- Two handed operations
- Moving things around
- Holding hand in place
- Playing board games, cards, musical instruments, pool, dart throwing, throwing ball, etc.
- Writing

TASKS PARENTS DEVELOPED

- Eating help - hold cups, plates etc.
- Preparing food, fixing their own snack
- Moving arm to wheelchair control
- Providing full range of arm motion
- Positioning arm in space
- Combing hair, applying cologne, shaving
- Buttoning dress
- Helping with toileting
- Device to lift disabled person, while able person can change clothes etc.
- Device to lift person to ease transfer
- Device to clamp wheelchair in vans
- Supporting trunk
- Putting shoes on, and pulling on pants
- Getting stuff off the floor
- Allowing for independent transfer - (Like a sliding seat; something that lifts over wheelchair parts)
- Holding arm at keyboard, holding pencil or pen at paper for writing
- Opening and closing doors
- Switching on lights
- Being more independent
- Reaching in general
- Raising hand in class
- Shaking hands
- Playing Lego, stacking blocks
- Grabbing things beyond arms reach
- Two handed operations
- Holding respirator by themselves
- Picking up their own head
- Holding an open book, turning pages
- Use scissors
- Throwing ball
- Playing board games, cards, pool etc. Playing games in general
- Raking leaves
- Operating environmental control systems
- Opening/closing of pen
- Opening school bags

Appendix II

A powered orthosis prototype was demonstrated to children with either DMD or SMA and their parents/caretakers. The prototype consisted of an RTX100 robot with a force sensor fixed to a bracket which in turn is fixed to the end of the robot’s wrist unit (where the gripper is usually located). A splint is fixed to the top of the force sensor. The splint is used to secure the person’s arm to the end of the robot. Two different control schemes, which related force input of the user (at the sensor) to movement of the arm, were demonstrated. The shoulder, elbow, yaw, zed (zee), and roll axis were active; the
Table II presents the results of the force data collected from the children. The child was asked to apply a force to a static joystick in different directions. The directions chosen were anterior/posterior, superior/inferior and lateral/medial. This data was collected to give a ballpark figure for the force capabilities of these children. The subjects seemed to apply a force which probably ranged from comfortable to maximum. Subject F’s results may not be very accurate since he managed to work the

<table>
<thead>
<tr>
<th>Subject</th>
<th>Max (med)</th>
<th>Min (lat)</th>
<th>Max (post)</th>
<th>Min (ant)</th>
<th>Max (sup)</th>
<th>Min (inf)</th>
<th>Max force magnitude</th>
<th>θ_x in degrees</th>
<th>θ_y in degrees</th>
<th>θ_z in degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>34.5</td>
<td>-12.7</td>
<td>36.7</td>
<td>-60.9</td>
<td>55.8</td>
<td>-6.8</td>
<td>85.99</td>
<td>68.29</td>
<td>131.65</td>
<td>49.52</td>
</tr>
<tr>
<td>F</td>
<td>xx</td>
<td>xx</td>
<td>24.0</td>
<td>-20.8</td>
<td>17.1</td>
<td>-13.5</td>
<td>24.31</td>
<td>98.68</td>
<td>8.93</td>
<td>87.90</td>
</tr>
<tr>
<td>G</td>
<td>13.2</td>
<td>-7.8</td>
<td>27.2</td>
<td>-18.7</td>
<td>6.3</td>
<td>-11.8</td>
<td>28.4</td>
<td>74.77</td>
<td>16.13</td>
<td>84.83</td>
</tr>
<tr>
<td>H</td>
<td>49.6</td>
<td>-17.0</td>
<td>25.5</td>
<td>-71.1</td>
<td>32.9</td>
<td>-20.6</td>
<td>92.28</td>
<td>58.06</td>
<td>140.36</td>
<td>69.10</td>
</tr>
<tr>
<td>J</td>
<td>0.6</td>
<td>-1.6</td>
<td>5.1</td>
<td>-1.6</td>
<td>0.3</td>
<td>-2.4</td>
<td>5.63</td>
<td>93.40</td>
<td>24.76</td>
<td>114.49</td>
</tr>
<tr>
<td>K</td>
<td>29.2</td>
<td>-17.7</td>
<td>31.0</td>
<td>-30.5</td>
<td>27.8</td>
<td>-11.8</td>
<td>50.37</td>
<td>54.97</td>
<td>127.22</td>
<td>56.50</td>
</tr>
</tbody>
</table>

Table II: Summary of Force data collected using the Flexbar
mounting loose when he applied a force. The results were graphically displayed during the experiment to give the children some visual feedback. The units of forces are Newtons, and the angles are with respect to the reference frame of the force sensor.

Appendix IV

Each subject has been given an alphabetic code (A,B,C...) here to withhold their identity. The caretakers of each child have been identified by the same alphabetic code, followed by a number. For example subject A has caretakers A1,A2, etc.

TASKS RATING OF VARIOUS CHILDREN

SUBJECT A (SMA TYPE II, 14 YEARS)
- Two handed operations
- Cutting food
- Pushing (propelling) a manual wheelchair
- Picking things off shelves
- Throwing a ball

SUBJECT B (SMA TYPE II, 8 YEARS)
- Holding respirator
- Brushing teeth
- Reaching for books
- Getting herself up (when she falls)
- Dressing herself

SUBJECT C (DMD, 13 YEARS)
- Talking on the phone
- Brushing, combing, scratching
- Playing with Lego
- Sports - Baseball, Hockey
- Cook food for family

SUBJECT D (SMA TYPE II, 5 YEARS)
- Hold telephone
- Two handed tasks
- Comb hair/ scratch nose
- Type
- Reach up and down

SUBJECT E (DMD, 11 YEARS)
- Picking up something on the floor.
- Raising hand

SUBJECT F (DMD, 15 YEARS)
- Picking up objects.
- Transferring for toileting and shower.
- Personal hygiene.
- Eating/ drinking.
- Picking up oneself.

SUBJECT G (DMD, 14 YEARS)
- Picking up things off the floor.
- Attaching phone to chair.
- Preparing food.
- Opening and closing doors.
- Reaching things off shelves in stores.

SUBJECT H (DMD, 13 YEARS)
- Raising hand in school.
- Straightening legs.
- Picking up things on the ground.
- Reaching things that are high, on shelf, etc.
- Restraining from falling forward. (Maintain trunk balance).

SUBJECT J (DMD, 23 YEARS)
- Moving arm to wheelchair control and back.
- Feeding oneself.
- Picking up things from the floor and shelves.
- Better lifting devices for using the toilet.
- Easier way to clamping wheelchair to van.

SUBJECT K (SMA, 18 YEARS)
<table>
<thead>
<tr>
<th>TASKS</th>
<th>CARETAKER A1</th>
<th>CARETAKER A2</th>
<th>CARETAKER B1</th>
<th>CARETAKER B2</th>
<th>CARETAKER C1</th>
<th>CARETAKER C2</th>
<th>CARETAKER C3</th>
<th>CARETAKER D1</th>
<th>CARETAKER D2</th>
<th>CARETAKER E1 / F1</th>
<th>CARETAKER E2 / F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eating / Drinking.</td>
<td>Personal Care - washing face, brushing teeth etc., toileting</td>
<td>Provide strength to transfer. (Toileting, movement in chair)</td>
<td>Eating</td>
<td>Independence</td>
<td>Feeding self</td>
<td>Feeding himself</td>
<td>Picking up items both light and heavy</td>
<td>Typing on computer</td>
<td>Brushing Teeth / hair</td>
<td>Getting up from bed to chair and back from chair to bed.</td>
<td></td>
</tr>
<tr>
<td>Personal hygiene.</td>
<td>Preparing food / Cooking.</td>
<td>Increase range of motion</td>
<td>Dressing</td>
<td>Picking up items both light and heavy</td>
<td>Get to things out of reach</td>
<td>Eating</td>
<td>Getting things that are out of reach. (Lego’s)</td>
<td>Eating</td>
<td>Two handed tasks</td>
<td>Straightening legs.</td>
<td></td>
</tr>
<tr>
<td>Preparing food / Cooking.</td>
<td>Reaching / Picking up objects.</td>
<td>Personal Hygiene</td>
<td>Reaching</td>
<td>Personal Hygiene</td>
<td>Get to things out of reach</td>
<td>Two handed tasks</td>
<td>Holding the phone</td>
<td>Two handed tasks</td>
<td>Throw ball</td>
<td>Shifting body.</td>
<td></td>
</tr>
<tr>
<td>Reaching / Picking up objects.</td>
<td>Straightening oneself from bent position.</td>
<td>Opening doors, windows</td>
<td>Playing</td>
<td>Lift off chair</td>
<td>Playing</td>
<td>Reaching his face to scratch, adjusting glasses, blowing his nose</td>
<td>Typing on computer</td>
<td>Typing on computer</td>
<td>Device to wear clothing and shoes.</td>
<td>Keeping feet from turning in foot rest.</td>
<td></td>
</tr>
<tr>
<td>Straightening oneself from bent position.</td>
<td></td>
<td>Reaching and picking things up</td>
<td>Picking up heavy objects</td>
<td>Typing on computer</td>
<td>Typing on computer</td>
<td>Typing on computer</td>
<td>Reach beyond close range. “Open window of activity”</td>
<td>Typing on computer</td>
<td>Typing on computer</td>
<td>Providing full range of arm motion.</td>
<td></td>
</tr>
</tbody>
</table>
CARETAKER E3 / F3
- Picking things off floor.
- Supporting trunk.
- Toileting help.
- Being able to lift person for easier transfer.

CARETAKER G1
- Picking self up when bent over.
- Picking things up off floor.
- Transferring from chair to bed, toilet, tub etc.
- Keeping legs and ankle straight.
- Feeding, doing hair, brushing teeth etc.

CARETAKER G2
- Easier transferring of position to toilet, tub, bed etc.
- Providing full range of arm motion.
- Supporting trunk.
- Two handed operations. (computer, keyboard etc.)
- Eating help.

CARETAKER H1
- Transferring ability.
- Moving arm with permanent fixtures.
- Getting up from prone position.

CARETAKER J1
- Eating help.
- Moving arm to wheelchair controls and return- also turning wheelchair on and off.
- Helping to use the toilet - better lifting devices.

- Holding arms to assist in using computer keyboard or writing with a pen.
- Opening and closing doors.

CARETAKER K
- Able to be self-sustaining i.e. cook, serve himself and eat unassisted by others.
- Transferring safely on himself.
- Turning on lights, TV, radio, picking up telephone.
- Being able to pickup objects.
- Design devices that encourage full potential.

Appendix V

The following is the list that the participants were given.

The following is from a survey conducted by Carolyn Anglin[1] and Stephen Prior[2].

The above two authors conducted surveys to determine the set of tasks of potential users of orthosis and robots. These are the combined results of the surveys.

- Reaching / Picking up objects
- Personal Hygiene
 - Brushing teeth, washing face, combing hair applying makeup, shaving, scratching and blowing nose
- Eating/Drinking
- Holding arm in given position
 - Keyboard operation, TV remote, Telephone, Painting
- Preparing Food/Cooking
 - Cutting, Mixing food, adding ingredients, Closing vessel, Opening vessel, Putting/removing vessel on stove
- Toileting
• Turning Pages
• Dressing

References
